3.7.98 \(\int \frac {\sqrt [4]{1-x}}{1+x} \, dx\) [698]

3.7.98.1 Optimal result
3.7.98.2 Mathematica [A] (verified)
3.7.98.3 Rubi [A] (verified)
3.7.98.4 Maple [A] (verified)
3.7.98.5 Fricas [C] (verification not implemented)
3.7.98.6 Sympy [C] (verification not implemented)
3.7.98.7 Maxima [A] (verification not implemented)
3.7.98.8 Giac [A] (verification not implemented)
3.7.98.9 Mupad [B] (verification not implemented)

3.7.98.1 Optimal result

Integrand size = 15, antiderivative size = 58 \[ \int \frac {\sqrt [4]{1-x}}{1+x} \, dx=4 \sqrt [4]{1-x}-2 \sqrt [4]{2} \arctan \left (\frac {\sqrt [4]{1-x}}{\sqrt [4]{2}}\right )-2 \sqrt [4]{2} \text {arctanh}\left (\frac {\sqrt [4]{1-x}}{\sqrt [4]{2}}\right ) \]

output
4*(1-x)^(1/4)-2*2^(1/4)*arctan(1/2*(1-x)^(1/4)*2^(3/4))-2*2^(1/4)*arctanh( 
1/2*(1-x)^(1/4)*2^(3/4))
 
3.7.98.2 Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 58, normalized size of antiderivative = 1.00 \[ \int \frac {\sqrt [4]{1-x}}{1+x} \, dx=4 \sqrt [4]{1-x}-2 \sqrt [4]{2} \arctan \left (\frac {\sqrt [4]{1-x}}{\sqrt [4]{2}}\right )-2 \sqrt [4]{2} \text {arctanh}\left (\frac {\sqrt [4]{1-x}}{\sqrt [4]{2}}\right ) \]

input
Integrate[(1 - x)^(1/4)/(1 + x),x]
 
output
4*(1 - x)^(1/4) - 2*2^(1/4)*ArcTan[(1 - x)^(1/4)/2^(1/4)] - 2*2^(1/4)*ArcT 
anh[(1 - x)^(1/4)/2^(1/4)]
 
3.7.98.3 Rubi [A] (verified)

Time = 0.17 (sec) , antiderivative size = 65, normalized size of antiderivative = 1.12, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {60, 73, 756, 216, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt [4]{1-x}}{x+1} \, dx\)

\(\Big \downarrow \) 60

\(\displaystyle 2 \int \frac {1}{(1-x)^{3/4} (x+1)}dx+4 \sqrt [4]{1-x}\)

\(\Big \downarrow \) 73

\(\displaystyle 4 \sqrt [4]{1-x}-8 \int \frac {1}{x+1}d\sqrt [4]{1-x}\)

\(\Big \downarrow \) 756

\(\displaystyle 4 \sqrt [4]{1-x}-8 \left (\frac {\int \frac {1}{\sqrt {2}-\sqrt {1-x}}d\sqrt [4]{1-x}}{2 \sqrt {2}}+\frac {\int \frac {1}{\sqrt {1-x}+\sqrt {2}}d\sqrt [4]{1-x}}{2 \sqrt {2}}\right )\)

\(\Big \downarrow \) 216

\(\displaystyle 4 \sqrt [4]{1-x}-8 \left (\frac {\int \frac {1}{\sqrt {2}-\sqrt {1-x}}d\sqrt [4]{1-x}}{2 \sqrt {2}}+\frac {\arctan \left (\frac {\sqrt [4]{1-x}}{\sqrt [4]{2}}\right )}{2\ 2^{3/4}}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle 4 \sqrt [4]{1-x}-8 \left (\frac {\arctan \left (\frac {\sqrt [4]{1-x}}{\sqrt [4]{2}}\right )}{2\ 2^{3/4}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{1-x}}{\sqrt [4]{2}}\right )}{2\ 2^{3/4}}\right )\)

input
Int[(1 - x)^(1/4)/(1 + x),x]
 
output
4*(1 - x)^(1/4) - 8*(ArcTan[(1 - x)^(1/4)/2^(1/4)]/(2*2^(3/4)) + ArcTanh[( 
1 - x)^(1/4)/2^(1/4)]/(2*2^(3/4)))
 

3.7.98.3.1 Defintions of rubi rules used

rule 60
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + n + 1))), x] + Simp[n*((b*c - a*d)/( 
b*(m + n + 1)))   Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, 
 c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !Integer 
Q[n] || (GtQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinear 
Q[a, b, c, d, m, n, x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 756
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2 
]], s = Denominator[Rt[-a/b, 2]]}, Simp[r/(2*a)   Int[1/(r - s*x^2), x], x] 
 + Simp[r/(2*a)   Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ[a 
/b, 0]
 
3.7.98.4 Maple [A] (verified)

Time = 1.34 (sec) , antiderivative size = 60, normalized size of antiderivative = 1.03

method result size
derivativedivides \(4 \left (1-x \right )^{\frac {1}{4}}-2^{\frac {1}{4}} \left (\ln \left (\frac {\left (1-x \right )^{\frac {1}{4}}+2^{\frac {1}{4}}}{\left (1-x \right )^{\frac {1}{4}}-2^{\frac {1}{4}}}\right )+2 \arctan \left (\frac {\left (1-x \right )^{\frac {1}{4}} 2^{\frac {3}{4}}}{2}\right )\right )\) \(60\)
default \(4 \left (1-x \right )^{\frac {1}{4}}-2^{\frac {1}{4}} \left (\ln \left (\frac {\left (1-x \right )^{\frac {1}{4}}+2^{\frac {1}{4}}}{\left (1-x \right )^{\frac {1}{4}}-2^{\frac {1}{4}}}\right )+2 \arctan \left (\frac {\left (1-x \right )^{\frac {1}{4}} 2^{\frac {3}{4}}}{2}\right )\right )\) \(60\)
pseudoelliptic \(4 \left (1-x \right )^{\frac {1}{4}}-\ln \left (\frac {-\left (1-x \right )^{\frac {1}{4}}-2^{\frac {1}{4}}}{-\left (1-x \right )^{\frac {1}{4}}+2^{\frac {1}{4}}}\right ) 2^{\frac {1}{4}}-2 \,2^{\frac {1}{4}} \arctan \left (\frac {\left (1-x \right )^{\frac {1}{4}} 2^{\frac {3}{4}}}{2}\right )\) \(66\)
trager \(4 \left (1-x \right )^{\frac {1}{4}}-\operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2}\right ) \ln \left (-\frac {-x \operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2} \operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2}\right )+4 \operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2} \left (1-x \right )^{\frac {1}{4}}+3 \operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2} \operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2}\right )-4 \left (1-x \right )^{\frac {3}{4}}-4 \sqrt {1-x}\, \operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2}\right )}{1+x}\right )-\operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right ) \ln \left (-\frac {\operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{3} x -3 \operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{3}-4 \operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2} \left (1-x \right )^{\frac {1}{4}}-4 \sqrt {1-x}\, \operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )-4 \left (1-x \right )^{\frac {3}{4}}}{1+x}\right )\) \(208\)
risch \(-\frac {4 \left (-1+x \right )}{\left (1-x \right )^{\frac {3}{4}}}+\frac {\left (\operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2}\right ) \ln \left (-\frac {2 \sqrt {-x^{3}+3 x^{2}-3 x +1}\, \operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2} \operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2}\right ) x -2 \sqrt {-x^{3}+3 x^{2}-3 x +1}\, \operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2} \operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2}\right )+2 \left (-x^{3}+3 x^{2}-3 x +1\right )^{\frac {1}{4}} \operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2} x^{2}-4 \left (-x^{3}+3 x^{2}-3 x +1\right )^{\frac {1}{4}} \operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2} x -x^{3} \operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2}\right )+2 \left (-x^{3}+3 x^{2}-3 x +1\right )^{\frac {1}{4}} \operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2}+5 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2}\right ) x^{2}-4 \left (-x^{3}+3 x^{2}-3 x +1\right )^{\frac {3}{4}}-7 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2}\right ) x +3 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2}\right )}{\left (-1+x \right )^{2} \left (1+x \right )}\right )+\operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right ) \ln \left (\frac {2 \sqrt {-x^{3}+3 x^{2}-3 x +1}\, \operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{3} x -2 \sqrt {-x^{3}+3 x^{2}-3 x +1}\, \operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{3}+2 \left (-x^{3}+3 x^{2}-3 x +1\right )^{\frac {1}{4}} \operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2} x^{2}-4 \left (-x^{3}+3 x^{2}-3 x +1\right )^{\frac {1}{4}} \operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2} x +\operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right ) x^{3}+2 \left (-x^{3}+3 x^{2}-3 x +1\right )^{\frac {1}{4}} \operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2}-5 \operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right ) x^{2}+4 \left (-x^{3}+3 x^{2}-3 x +1\right )^{\frac {3}{4}}+7 \operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right ) x -3 \operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )}{\left (-1+x \right )^{2} \left (1+x \right )}\right )\right ) \left (-\left (-1+x \right )^{3}\right )^{\frac {1}{4}}}{\left (1-x \right )^{\frac {3}{4}}}\) \(529\)

input
int((1-x)^(1/4)/(1+x),x,method=_RETURNVERBOSE)
 
output
4*(1-x)^(1/4)-2^(1/4)*(ln(((1-x)^(1/4)+2^(1/4))/((1-x)^(1/4)-2^(1/4)))+2*a 
rctan(1/2*(1-x)^(1/4)*2^(3/4)))
 
3.7.98.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.23 (sec) , antiderivative size = 83, normalized size of antiderivative = 1.43 \[ \int \frac {\sqrt [4]{1-x}}{1+x} \, dx=-2^{\frac {1}{4}} \log \left (2^{\frac {1}{4}} + {\left (-x + 1\right )}^{\frac {1}{4}}\right ) - i \cdot 2^{\frac {1}{4}} \log \left (i \cdot 2^{\frac {1}{4}} + {\left (-x + 1\right )}^{\frac {1}{4}}\right ) + i \cdot 2^{\frac {1}{4}} \log \left (-i \cdot 2^{\frac {1}{4}} + {\left (-x + 1\right )}^{\frac {1}{4}}\right ) + 2^{\frac {1}{4}} \log \left (-2^{\frac {1}{4}} + {\left (-x + 1\right )}^{\frac {1}{4}}\right ) + 4 \, {\left (-x + 1\right )}^{\frac {1}{4}} \]

input
integrate((1-x)^(1/4)/(1+x),x, algorithm="fricas")
 
output
-2^(1/4)*log(2^(1/4) + (-x + 1)^(1/4)) - I*2^(1/4)*log(I*2^(1/4) + (-x + 1 
)^(1/4)) + I*2^(1/4)*log(-I*2^(1/4) + (-x + 1)^(1/4)) + 2^(1/4)*log(-2^(1/ 
4) + (-x + 1)^(1/4)) + 4*(-x + 1)^(1/4)
 
3.7.98.6 Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 2.90 (sec) , antiderivative size = 243, normalized size of antiderivative = 4.19 \[ \int \frac {\sqrt [4]{1-x}}{1+x} \, dx=\frac {5 \sqrt [4]{-1} \sqrt [4]{x - 1} \Gamma \left (\frac {5}{4}\right )}{\Gamma \left (\frac {9}{4}\right )} + \frac {5 \sqrt [4]{-2} e^{- \frac {i \pi }{4}} \log {\left (- \frac {2^{\frac {3}{4}} \sqrt [4]{x - 1} e^{\frac {i \pi }{4}}}{2} + 1 \right )} \Gamma \left (\frac {5}{4}\right )}{4 \Gamma \left (\frac {9}{4}\right )} - \frac {5 \left (-1\right )^{\frac {3}{4}} \cdot \sqrt [4]{2} e^{- \frac {i \pi }{4}} \log {\left (- \frac {2^{\frac {3}{4}} \sqrt [4]{x - 1} e^{\frac {3 i \pi }{4}}}{2} + 1 \right )} \Gamma \left (\frac {5}{4}\right )}{4 \Gamma \left (\frac {9}{4}\right )} - \frac {5 \sqrt [4]{-2} e^{- \frac {i \pi }{4}} \log {\left (- \frac {2^{\frac {3}{4}} \sqrt [4]{x - 1} e^{\frac {5 i \pi }{4}}}{2} + 1 \right )} \Gamma \left (\frac {5}{4}\right )}{4 \Gamma \left (\frac {9}{4}\right )} + \frac {5 \left (-1\right )^{\frac {3}{4}} \cdot \sqrt [4]{2} e^{- \frac {i \pi }{4}} \log {\left (- \frac {2^{\frac {3}{4}} \sqrt [4]{x - 1} e^{\frac {7 i \pi }{4}}}{2} + 1 \right )} \Gamma \left (\frac {5}{4}\right )}{4 \Gamma \left (\frac {9}{4}\right )} \]

input
integrate((1-x)**(1/4)/(1+x),x)
 
output
5*(-1)**(1/4)*(x - 1)**(1/4)*gamma(5/4)/gamma(9/4) + 5*(-2)**(1/4)*exp(-I* 
pi/4)*log(-2**(3/4)*(x - 1)**(1/4)*exp_polar(I*pi/4)/2 + 1)*gamma(5/4)/(4* 
gamma(9/4)) - 5*(-1)**(3/4)*2**(1/4)*exp(-I*pi/4)*log(-2**(3/4)*(x - 1)**( 
1/4)*exp_polar(3*I*pi/4)/2 + 1)*gamma(5/4)/(4*gamma(9/4)) - 5*(-2)**(1/4)* 
exp(-I*pi/4)*log(-2**(3/4)*(x - 1)**(1/4)*exp_polar(5*I*pi/4)/2 + 1)*gamma 
(5/4)/(4*gamma(9/4)) + 5*(-1)**(3/4)*2**(1/4)*exp(-I*pi/4)*log(-2**(3/4)*( 
x - 1)**(1/4)*exp_polar(7*I*pi/4)/2 + 1)*gamma(5/4)/(4*gamma(9/4))
 
3.7.98.7 Maxima [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 61, normalized size of antiderivative = 1.05 \[ \int \frac {\sqrt [4]{1-x}}{1+x} \, dx=-2 \cdot 2^{\frac {1}{4}} \arctan \left (\frac {1}{2} \cdot 2^{\frac {3}{4}} {\left (-x + 1\right )}^{\frac {1}{4}}\right ) + 2^{\frac {1}{4}} \log \left (-\frac {2^{\frac {1}{4}} - {\left (-x + 1\right )}^{\frac {1}{4}}}{2^{\frac {1}{4}} + {\left (-x + 1\right )}^{\frac {1}{4}}}\right ) + 4 \, {\left (-x + 1\right )}^{\frac {1}{4}} \]

input
integrate((1-x)^(1/4)/(1+x),x, algorithm="maxima")
 
output
-2*2^(1/4)*arctan(1/2*2^(3/4)*(-x + 1)^(1/4)) + 2^(1/4)*log(-(2^(1/4) - (- 
x + 1)^(1/4))/(2^(1/4) + (-x + 1)^(1/4))) + 4*(-x + 1)^(1/4)
 
3.7.98.8 Giac [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 64, normalized size of antiderivative = 1.10 \[ \int \frac {\sqrt [4]{1-x}}{1+x} \, dx=-2 \cdot 2^{\frac {1}{4}} \arctan \left (\frac {1}{2} \cdot 2^{\frac {3}{4}} {\left (-x + 1\right )}^{\frac {1}{4}}\right ) - 2^{\frac {1}{4}} \log \left (2^{\frac {1}{4}} + {\left (-x + 1\right )}^{\frac {1}{4}}\right ) + 2^{\frac {1}{4}} \log \left ({\left | -2^{\frac {1}{4}} + {\left (-x + 1\right )}^{\frac {1}{4}} \right |}\right ) + 4 \, {\left (-x + 1\right )}^{\frac {1}{4}} \]

input
integrate((1-x)^(1/4)/(1+x),x, algorithm="giac")
 
output
-2*2^(1/4)*arctan(1/2*2^(3/4)*(-x + 1)^(1/4)) - 2^(1/4)*log(2^(1/4) + (-x 
+ 1)^(1/4)) + 2^(1/4)*log(abs(-2^(1/4) + (-x + 1)^(1/4))) + 4*(-x + 1)^(1/ 
4)
 
3.7.98.9 Mupad [B] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 46, normalized size of antiderivative = 0.79 \[ \int \frac {\sqrt [4]{1-x}}{1+x} \, dx=4\,{\left (1-x\right )}^{1/4}-2\,2^{1/4}\,\mathrm {atanh}\left (\frac {2^{3/4}\,{\left (1-x\right )}^{1/4}}{2}\right )-2\,2^{1/4}\,\mathrm {atan}\left (\frac {2^{3/4}\,{\left (1-x\right )}^{1/4}}{2}\right ) \]

input
int((1 - x)^(1/4)/(x + 1),x)
 
output
4*(1 - x)^(1/4) - 2*2^(1/4)*atanh((2^(3/4)*(1 - x)^(1/4))/2) - 2*2^(1/4)*a 
tan((2^(3/4)*(1 - x)^(1/4))/2)